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LETTER TO THE EDITOR 

Simulations with a large number of neurons 
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Received 25 May 1989 

Abstract. We propose a new algorithm for evolution of neural networks, by division of 
the network into subnets, in order to reach retrieval of stored correlated patterns. We 
present a fast code for simulations with a large number of neurons (-lOO00). The 
simulations were carried out on a microcomputer. 

Since Hopfield’s original paper (Hopfield 1982), where it was proposed that neural 
networks act like content-addressable memory, the retrieval and storage properties of 
neural networks have been intensively studied. The Hopfield model of neural network 
fails when the stored patterns are correlated, or when the neural network presents low 
levels of activity (Amit e? a1 1987a). Amit et a1 (1987b) used the replica-symmetry 
approach and numerical simulations considering up to 3000 fully connected neurons 
to obtain some important results concerning the Hopfield model. In this letter, we 
present a fast computer code for simulations with a large number of neurons, using 
both synchronous or asynchronous dynamics. We used up to 10 000 neurons, but this 
number may be increased. The simulations were carried out on an 80286-based 
microcomputer, running at 12 MHz. Our code spends -3 min/stored pattern in 10 000- 
neuron networks with lo8 synapses, on the traditional Hopfield model. Each neuron 
holds an Ising spin (0 or 1) stored in only one bit of computer memory. 

For the sake of simplicity we treated the zero-temperature case. However, the 
extension to finite temperatures is straightforward. The neuron states in an N-neuron 
network with P stored patterns are represented by Si = f l ,  and the coupling strengths 
are denoted by JU, as usual. The dynamics is governed by 

S i ( ?+ l )=sgn  1 JUSj(?)  (jl, 1 
with 

where .$? = i l  represents the neuron i of the stored pattern p. Equation (2) includes 
a self-interaction Jii = P, which is usually set equal to zero, but can also be considered 
different from zero (Fontanari and Koberle 1988). One can easily consider any value 
Jii by summing a term (Jii - P ) S i ( ? )  inside the brackets of (1). 

Usually, one evaluates the JU values, and stores them in an N x N matrix (the JU 
values are not altered during the dynamic process). In our computer code we do not 
store the values of Jij, but only the patterns 5’ bit by bit on integer computer words. 
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Therefore, we can use bitwise operations instead of the arithmetic operations appearing 
in (1) and (2), with no need to store partial results. The procedure is schematically 
as follows: we define new quantities: ui = 1,0 corresponding to Si = -1, + 1  respectively 
and J y  = 1,0 corresponding to = -1, $1, respectively. Then, the neuron states 
become 

where 0 corresponds to the XOR (exclusive OR) logical operator and the final division 
by N P  is of integer type. The usual Jii = 0 case is obtained simply by substituting N P  
by ( N  - l)P if ai( t )  = 0 or by ( N +  l ) P  if g8(  t )  = 1 in the final division; we have used 
this prescription in all simulations we have made. The trick we used is to interchange 
the order of summations. Inside the j summation, the product ly 0 U, is performed 
simultaneously for 16 neurons (in a 16-bit word processor) through only one XOR 
bitwise operation. The j summation is then performed simply by counting the number 
of bits 1 in the resulting word, through a POPCOUNT operation. This may be 
performed by a well defined routine using bitwise operations, but can be found, already 
implemented, on some versions of usual computer languages. 

For uncorrelated patterns it is a well known fact that a discontinuous transition at 
a = a, = 0.145 exists, where a = P /  N.  If we consider correlated patterns, a, will be 
reduced drastically and no retrieval at all can be obtained in most cases. In order to 
test the behaviour of large networks we propose a new algorithm for the dynamics of 
the Hopfield model. We are interested in a neural network as a useful associative 
memory, not as a biological system. Consider, for example, two stored patterns with 
correlation x, defined as 

Hence, x=O means uncorrelated patterns and x = + l  (-1) means equal (opposite) 
patterns. If the two patterns have correlation x, they will have N(1- x) /2 ‘different’ 
neurons and N (  1 + x) /2 ‘equal’ neurons. Consider, for instance, x > 0. First we divide 
the network into two subnets: the first subnet has N (  1 - x )  neurons, where half of this 
number correspond to the different neurons, and the other half are chosen among the 
set of neurons which are equal in both patterns (any choice works). As a result the 
correlation between these two patterns inside this subnet is zero. The other subnet 
contains the N x  remainder neurons, all equal in both patterns. This means that for 
this subnet x = 1, and inside it both patterns can be considered as one. This approach 
can be extended to include more than two correlated patterns, or by division of the 
network into more subnets, or by a suitable choice of neurons that are equal in the 
two more correlated patterns, for only two subnets. The large number of neurons we 
can reach through our code is very important in this aspect. The next step is to let 
the two subnets evolve under the Hopfield dynamic independently, i.e. each subnet is 
fully connected, but there are no connections between distinct subnets. In table 1 we 
present the results obtained by taking one of the correlated patterns as input (without 
noise), for both the traditional Hopfield model and our model. Here, C is the mean 
correlation between the correlated stored patterns and m is the correlation between 
the pattern to be retrieved (the input) and its image after one complete update of the 
whole network (T = 0). Note that the value of m must be exactly 1 in this noiseless 
case: this is a necessary condition in order to reach retrieval when some initial noise 
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Table 1.  Mean correlation between patterns ( C )  and correlation ( m )  between input pattern 
and its image after one complete upate, for the Hopfield model (mi') and our model (mh). 

C 0.50 0.60 0.70 0.80 0.90 
md 0.76 0.80 0.85 0.90 0.95 
mh 1 1 1 1 1 

is included. We perform these simulations on a 6000-neuron network, with 10 uncorre- 
lated and 5O0/o-biased patterns and three (or four) correlated patterns. Thus we can 
only observe the effects due to pattern correlations, without saturation effects. The 
time needed to perform these simulations is reduced because the computer time involved 
in our simulations increases linearly with the number of stored patterns (P) and with 
the number of connections between neurons, and this last number is reduced after the 
subnet-division procedure. We believe that in a 32-bit processor the time will be 
considerably reduced. Our model is also robust for more than 30% of initial noise. 
We have also tested it for low level of activity patterns (5-10% of firing neurons). In 
our model the correlated part is a ferromagnetic fundamental state with unfiring 
neurons, for the low-level activity, and the final correlation is still 1. Generalisation 
to new rules like those of Gutfreund (1988) is straightforward. 

The complete code was developed in C programming language (Kerningham and 
Ritchie 1978), for which there are the most efficient compilers for microcomputers, 
and is available on request from one of the authors. Translation to other languages 
is straightforward. 

We would like to thaink R B Muniz for a critical reading of the manuscript. This 
work was partially supported by Brazilian agencies FINEP and CNPq. 
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